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Abstract-In this paper, our purpose is to bring out the traditional thoughts of the classical inventory model and to 

overcome some difficulty of the traditional classical inventory model. Classical inventory model is not able to 

include memory or past experience effects. It is known that a physical meaning of the fractional order is an index of 

memory. This paper wants to develop three type generalization as fractional order inventory model using fractional 

calculus according as (i) only the rate of change of inventory level fractional order ,(ii) demand rate as a fractional 

polynomial of degree  and  is the rate of change of the inventory level.(iii)demand rate as a fractional 

polynomial of degree m  may be different from the order  .The fractional models are governed by the Caputo 

fractional order derivative.  
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1. INTRODUCTION 

In 1695 Gottfried Leibnitz gave a letter to Guillaume 

L‟Hopital with a question was it possible if the order 

of derivative is some irrational, fractional or complex 

number? “Dream commands life” and this idea gave 

a direction to open a new branch of calculus which is 

named as fractional calculus. The earliest systematic 

studies were attributed by Leibnitz, Riemann-

Liouville for long time. Due to lack of physical 

interpretation, use of fractional calculus was not 

realm in applied field. But in recent trends, it is going 

rapid developments in the applied science because a 

physical intuition of fractional calculus has been 

found which signifies index of memory. In ordinary 

calculus has so many advantages but it is not able to 

include memory of the system but it is appropriate for 

fractional calculus. Due to the above advantage of 

fractional calculus, it is rapidly used to the memory 

affected system which are affected by memory or 

past experience otherwise it is not logical. Memory 

means it depends not only present state of the system 

but also past state of the system. Some field like 

biological system[1],physics[2],financial 

process[3,4,5] has great importance of memory effect 

because there are some endogenous and exogenous 

variables of the inventory system, are very much 

depend on the memory or past experience of the 

system. Inventory system is one of the most wrathful 

example as memory affected system. 

Inventory means stock of goods or resources. 

Inventory model is formulated for the business 

purpose to determine the optimum ordering interval 

with minimized total average cost and optimum level 

of inventories. Harris was the first person who 

attributed to develop the EOQ model and Wilson also 

gave the attention to make up analytical result of the 

EOQ model. There are listed so many researchers 

like Dave and patel [6], McDonald[7], Silver and 

Meal[8],Donaldson[9], Agarwal [10] gave their 

contribution to give more and more realistic idea 

about inventory system depending on demand rate, 

shortage etc. 

 

Here, inventory system is considered as memory 

affected system. Why? 

 

In inventory system, optimal ordering interval and 

minimized total average cost depend on some 

endogenous or exogenous variable of the inventory 

system. It depends on the environment of the shop or 

company i.e. position of the shop or company, 

political or social situation. Moreover, decrease or 

increase of profit depends on the dealing of the staff 

of the company or shopkeeper because bad behavior 

is not suitable to deal with customer properly. On the 

other hand, if customers gain some poor experience 
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from any company or shop, further they will not 

agree to purchase products from those companies or 

shop inspite of its Product‟s popularity will decrease. 

Another type of memory is regarded corresponding 

carrying or holding cost which refers to total cost of 

holding or carrying the total inventory. There is 

included transportation system. The dealings of the 

transportation driver have effect on the business. If it 

provides poor service then further company or 

shopkeeper do not want to take this poor service in 

future. Above all reasons imply that Inventory system 

is memory affected system. 

Here, we have suggested fractional order derivative 

to take into account memory effect. But why? 

It is known that the time rate of change of integer 

orders are determined by the property of 

differentiable functions of time only in infinitely 

small neighborhood of the considered point of time. 

Hence, there is assumed an instant changes of the 

marginal output, when the input level changes. 

Therefore, dynamic memory effect is not present in 

classical calculus and it is not able to discuss all state 

of the system i.e (present system depend on the 

past).But in fractional derivative the rate of change is 

affected by all points of the considered interval, so it 

is a memory dependent derivative [1] and fractional 

order is physically treated as an index of memory. It 

can remove amnesia from the system as fractional 

differentiation involves integration over time from 

past up to the present point of interest or present to 

future point of interest 

 

In this paper, three type of generalization with 

fractional calculus has been proposed from the linear 

type demand rate, no shortage type inventory model. 

Three fractional order inventory models have been 

considered as (i) only the rate of change of inventory 

level fractional order ,(ii) demand rate as a 

fractional polynomial of degree  where  is the 

rate of change of the inventory level.(iii)demand rate 

as a fractional polynomial of degree m may be 

different from the order .Here, left-caputo 

fractional order derivative has been refered.To solve 

the fractional differential equation, fractional laplace 

transform method[14,22] has been used and to 

evaluate carrying cost , fractional order integration 

has been applied. Fractional derivative and 

integration play major role to derive the all fractional 

model. But in the classical model, ordinary integer 

order derivative and integration have been applied. It 

is analogous to the physical meaning of speed. It is 

also known to us that derivative of integer order is 

determined by the property of differentiable functions 

of time only in infinitely small neighborhood of the 

measured point of time. 

 

Our analysis establishes that Classical inventory 

system is a particular case of the fractional order 

inventory system and the business is very much 

affected for dealings and environment and political 

and social situation and it is also observed that the 

system is not so affected by the service of the 

transportation driver. In the system, once, critical 

memory effect has been found where business policy 

falls down. 

 

Rest part of the paper is arranged by the following 

ways in the section-2,review of fractional calculus, 

classical inventory model has been given in section3, 

in the section-3.4, fractional order inventory model 

has been served, Numerical example has been 

furnished in the section-4, Some conclusions are 

cited in the section-5. 

 

2. REVIEW OF FRACTIONAL CALCULUS 

 

2.1 Euler Gamma Function 

 

Euler‟s gamma function is one of the best tools in 

fractional calculus which was proposed by the Swiss 

mathematicians Leonhard Euler (1707-1783).The 

gamma function  x is continuous extension from 

the factorial notation. The gamma function is denoted 

and defined by the formulae 

    0
0

1  


 xdtetx tx

 

 x is extended for all real and complex numbers 

and the gamma function satisfies some basic 

properties 

     
 1

1 ,

1 7 6 1
,

2 2 6 7 6

x
x x x x

x



 
      

     
           
     

 

Numerically !x  can be evaluated for all positive 

integer values numerically but  1 x  can be 

evaluated for real values. 

 

2.2 Riemann-Liouville fractional derivative(R-L) 

Left Riemann-Liouville fractional derivative of order 

 is denoted and defined as follows  
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 
 

 
 11

( ) ( )

where 0

m x
m

a x

a

d
D f x x f d

m dx

x

   


  
  
   



       (1a) 

Right Riemann-Liouville fractional derivative of 

order  is defined as follows  

 
 

 
 11

( ) ( )

where 0

m b
m

x b

x

d
D f x x f d

m dx

x

   


  
   
   



   (1b) 

Riemman-Liouville fractional derivative of any 

constant function is not equal to zero which creates a 

distance between ordinary calculus and fractional 

calculus. This definition creates a difficulty that 

action of derivative of constant term is not zero. 

 

2.3 Caputo fractional order derivative 

 

Left Caputo fractional derivative [11] for the function 

)(xf which has continuous, bounded derivatives in 

 ba, is denoted and defined as follows 

 
 

 
 11

( ) ( ) (2)

where 0 1

x
mC m

a x

a

D f x x f d
m

m m

   




 
 
 

   



 

Right Caputo fractional derivative for the function 

)(xf which has continuous and bounded derivatives 

in  ,,ba is defined as follows 

 
 

 
 11

( ) ( )

where 0 1

b
mC m

x b

x

D f x x f d
m

m m

   




 
 
 

   



 

  constant.Awhere,  oADx

C

a



 
 

2.4Fractional Laplace transforms Method 

The Laplace transform of the function )(tf  is 

defined as  

 
0

( ( )) ( )stF s L f t e f t dt



  
                   

(3a) 

where s>0 and s is called the transform parameter. 

The Laplace transformation of n
th

 order derivative is 

defined as  

      
1

1

0

0

n
n n n k k

k

L f t s F s s f


 



 
            

(3b) 

where  tf n
 denotes n

th
 derivative of the function f 

with respect to t and for non – integer m  it is defined 

in generalized form[13] as, 

      
1

1

0

0
m k

n
m m k

k

L f t s F s s f
 





 
            

(3c)

 
Where m is the largest integer such that  

( 1) .n m n    

2.5 Memory dependent derivative 

Derivative of any function using the kernel can be 

written in the following form [1] 

      
x

a

D f x K x s f s ds 
                    

(4a) 

For integer order derivative the kernel is considered 

as (x ) (x )K s s   and it gives the memory less 

derivative. To derive the concept of memory effect 

using definition (4a) we consider 

 
 
 

m
x s

K x s
m








 
 

and expressed in the 

following form 

      
x

m
a

a

D f x K x s f s ds  
             

(4b) 

Where
mf  denotes the common m-th order 

derivative, which has specific physical meaning. The 

integer order derivative is a local property but the 

th  order fractional derivative is not a local 

property. The total effects of the commonly used 

th derivative on the interval [a, x] describes the 

variation of a system in which the instantaneous 

change rate depends on the past state, is called the 

„„memory effect‟‟. Here, the rate of memory kernel 

decays depending on . Hence, the strength of the 

memory is controlled by . When, 1 , it 

becomes week in the sense of memory and when

1.0  , the system becomes memory less. The low 

value of   indicates long memory of the system. 

3. MODEL FORMULATIONS
 

In this section, the classical inventory model has been 

introduced analytically. All mathematical models in 
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this paper are developed on the basis of the following 

notations and assumptions. 

 

3.1 Notations 

 

:)( Ri Demand rate :)( Qii Total order 

quantity 

:)( Uiii Per unit cost :)( 1Civ Inventory 

holding cost per unit 

:)( 3Cv Ordering cost 

or setup cost 

:)()( tIvi Stock level or 

inventory level 

:)( Tvii Ordering 

interval. 

:)( HOCviii Inventory 

holding cost per cycle for 

the classical inventory 

model. 

:)( *Tix Optimal 

ordering interval 

:)( TOCx Total average 

cost during the total time 

interval 
:*)( TOCxi Minimized 

total average cost during 

the total time interval

 T,0 for classical 

inventory model. 

:)( *

,TOCxii

Minimized total average 

cost during the total time 

interval  T,0  for 

fractional order model as 

defined in the section-

3.4.1. 

:)( *

,Txiii  Optimal 

ordering interval for 

fractional order 

inventory model as 

defined in the section-

3.4.1. 

:)( ,HOCxiv

Inventory holding cost 

per cycle for fractional 

order inventory model as 

defined in the section 

3.4.1. 

:)( *

,,  mTxv  Optimal 

ordering interval for 

fractional order 

inventory model as 

defined in section-3.4.3. 

:)( *

,,  mTOCxvi

Minimized total average 

cost during the total time 

interval  T,0 as defined 

in section-3.4.3.
 

:)( ,,  mHOCxvii

Inventory holding cost 

per cycle for fractional 

order inventory model 

as defined in section-

3.4.3.
 

:)( Bxviii Beta function. 

:)( *

,Txix Optimal 

ordering interval for 

fractional order 

:)( ,HOCxx Inventory 

holding cost per cycle for 

fractional order inventory 

inventory model as 

defined in the section-

3.4.2.
 

model as defined in the 

section-3.4.2.
 

:)( *

,TOCxxi

Minimized total average 

cost during the total 

time interval  T,0 as 

defined in section-3.4.2.
 

:)( xxii gamma 

function.
 

 

Table-1: Used different symbols and items for 

developing the models. 

 

3.2Assumptions 

 

(i) Lead time is zero. 

(ii)Time horizon is infinite. 

(iii)There is no shortage. 

(iv)There is no deterioration. 

 

3.3 Classical inventory model 

 

During the period  T,0 , the inventory level depletes 

due to the demand with demand rate

  0,,  babta  where shortage is not allowed. 

Hence, the ordinary differential equation governing 

the inventory level at any time t during the period 

[0,T] is given by 

  
  0

d I t
a bt for t T

dt
    

               
(5) 

with boundary conditions are 0)( TI and QI )0( . 

Inventory level is obtained by solving (5) with the 

boundary condition 0)( TI in the following form 

     22

2
tT

b
tTatI                      (6)

 

Using initial condition (0)I Q , the optimal order 

quantity can be obtained as, 

  







 2

2
T

b
aTtI

                               

(7)

 
Corresponding total inventory holding cost over the 

time interval [0,T] is 

     2 2

1

0

2 3

1

2

2 3

T
b

HOC T C a T t T t dt

aT bT
C

 
    

 

 
  

 


(8) 
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Hence, the total cost per unit time is as 

 TOC T = ((Purchasing cost ( PC )) +(holding 

cost(  HOC T ))+(set up cost (
3C ))) 

 
2 3

2

1 3
2 2 3

TOC T

b aT bT
U aT T C C
   

                                

(9)

 

Therefore, the total average cost per unit time per 

cycle is  

 
2 3

2

1 3
2 2 3

avTOC T

b aT bT
U aT T C C

T

   
                              (10)

 

Thus, the objective of the classical EOQ model can 

be represented in the form as, 

 
 3( )

(11)

0

UQ HOC T C
MinTOC T

T

Subject toT

 



 

 

We now want to find its optimal ordering interval
*T

using the necessary condition (i) ( )
0

d TOC

dT


provided
 

*

2

2
(ii) 0

T T

d TOC

dT


 . 

The necessary condition (i) gives 

0
322

2

1

2

31 









TbC

T

CaCbU
(12) 

The optimal ordering interval
*T  has been found 

from the non-linear polynomial equation. Thus 
*TOC is the minimum value of TOC (T

*
) which is 

obtained at this optimal ordering interval .*T  
 

3.4Fractional Generalization of the Classical EOQ 

Models 

 

Now, we are going to generalize the above classical 

inventory model considering fractional order rate of 

change of the inventory level with different type 

demand rate (i) quadratic type polynomial (ii) 

fractional order polynomial whose order is same as 

fraction order rate of change of inventory level, (iii) 

fractional order polynomial whose order may not be 

same as fractional order rate of change of inventory 

level. 

 

Model-I formulation with memory kernel 

 

In order to study the study of memory effect on the 

inventory model, we consider the fractional 

generalization of the classical inventory model or 

memory less inventory model with linear type 

demand rate  bta  and no shortage. All other 

assumptions are same as for the classical inventory 

model. Due to observe the influence of memory 

effects, first the differential equation (5) can be 

written using the kernel function as follows [1]. 

 

 
   '''

0

dtbtattk
dt

tdI t

  (13)

 

in which ( ')k t t  is the kernel function. For Markov 

process it is equal to the delta function ( ')t t  and it 

will generate the equation (5). Indeed, any arbitrary 

function can be succeed by a sum of delta functions, 

thereby leading to a given type of time correlations. 

An appropriate choice, in order to include in long-

term memory effects, can be a power-law function 

which displays a slow decay such that the state of the 

system at quite early times also contributes to the 

evolution of the system[1]. 

This type of kernel guarantees the existence of 

scaling features as it is often intrinsic in most natural 

phenomena. Thus, to generate the fractional order 

model we consider  
  

 










1

'
'

2
tt

ttk , where 

0 1  and ( ) denotes the gamma function. 

Using the definition of fractional derivative [13,14] 

we can re-write the Equation (13) to the form of 

fractional differential equations with the Caputo-type 

derivative in the following form  

 

    btaD
dt

tdI
t

  1

0


  (14)

 

Now, applying fractional Caputo derivative of order 

( 1)  on both sides of the Eq. (14), and using the 

fact the Caputo fractional derivative and fractional 

integral are inverse operators, the following fractional 

differential equations can be obtained for the model 

 btaD
t

C 

0  
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  
  

 0 (15)

0 1, 0

C

t

d I t
D I t a bt

dt

t T









   

   

with boundary conditions 0)( TI and QI )0( .

 The strength of memory is controlled by . When,

1 , memory of the system becomes weak. 

 

Model-II 

 

In the second fractional model, both rate of change of 

the inventory level and the demand rate has been 

generalized. Fractional index in both the cases 

remains same.  

We consider a fractional order inventory model 

where the rate of change of the inventory level is the 

fractional type and the demand rate is the fractional 

type with the same index. The model can be posed as, 

  
  

 0 (16)

0 1, 0

C

t

d I t
D I t a bt

dt

t T



 





   

     

With boundary conditions are 0)( TI and QI )0( . 

 

Model-III 

 

In the third fractional model, the rate of change of the 

inventory level and the demand rate are both 

generalized but their fractional indexes are 

considered different. The inventory problem will then 

be, 

  
  

 0 (17)

, 0 , 1, 0

C m

t

d I t
D I t a bt

dt

where m t T









   

   
 

with boundary conditions 0)( TI and QI )0( . 

 
In all the above three generalized cases of fractional 

order differential equations, boundary conditions are 

used same as of the classical differential equation. 

This is the right platform for the use of left-Caputo 

fractional derivative. Hence, we have been used it 

and get memory effect of the system. 

 

3.4.1 Analytic solution of model-I 

Here, we consider the fractional order inventory 

model-I, which can be solved by using Laplace 

transform method with the initial condition, given in 

the problem. In operator form the fractional 

differential equation in (15) can be represented as 

    0 (18)

, ,0 1, 0

C

tD I t a bt

d
D where t T

dt









  

    
 

Using Laplace transform and the corresponding 

inversion formula on the equation (18) we get the 

inventory level for this fractional order inventory 

model at time t which can be written as 

 
   






















21

1btat
QtI

             

(19) 

Using the boundary condition   0TI on the 

equation (19) we get the total order quantity as 

   











21

1bTaT
Q

                         

(20) 

and corresponding the inventory level at time t being, 

 

 
 

 
 1 1 (21)

1 2

I t

a b
T t T t   

 

 
 

         

 

The
th  0 1  order total inventory holding 

cost is denoted as  THOC  , and defined as 

     

 
 

   
 

 
 

 

   

 

 
 

   

 

 

, 1 0

11

1 10

1

1

1

1

2

1,1

1 1

2,1
(22)

2 1

T

T

HOC T C D I t

a
T t

C
T t dt

b
T t

BC aT

BC bT



 

 



 

 

 







 

  

 

  





 



 



 
  

  
 
  
  

 
        

 
        



 

(here,   is considered another memory parameter 

corresponding carrying cost. It is known to us that 

carrying cost is referred to the total cost for carrying 

or holding of the total inventory. Hence, it is 

transportation related cost. In the transportation 

system, transportation driver may be good or bad. 

The effect of bad service always has a bad impact on 

the business due to the above reason a memory effect 

will be found on the business) 
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Therefore, the total average cost per unit time per 

cycle is 

 

  

   
 

   

 

 
 

   

 

 

,

, 3

1

1

1

11
3

1 2

1,1
(23)

1 1

2,1

2 1

TOC T

UQ HOC T C

T

aUT bUT

BC aT

BC bT
C T

 

 

 

 

 

 

 

  

 

  



 





 


 
 
    

 
  

           
  
            

Here, four cases have been studied for the 

characterization of this fractional order inventory 

model  (i)0<α 1.0,0<β 1.0, 

(ii)β 1.0 and   0<α 1.0, 

(iii)α 1.0 and   0<β 1.0, 

(iv)α 1.0,β 1.0. 
 

 

(i)Case-1: 0<α 1.0, 0<β 1.0. 
 

 

In this case, the total average cost becomes 

 

   
 

   

 

 
 

   

 

 

,

1

1

1

1

1

3

1 2

1,1

1 1

2,1

2 1

avTOC T

aUT bUT

BC aT

BC bT

C T

 

 

 

 

 

 

  

 

  



 





 
 

    
  
           
 
  
          
 
       

(24) 

To evaluate the minimum value of the total average 

cost  
,

,avTOC T
 

we propose the corresponding 

non-linear programming problem in the following 

form and solve primal geometric programming 

method, are discussed bellow 

 
   1 1 1

1
, (25)

Subject to 0

av AT B T CT DT ET
MinTOC T

T

    

 

       
 


 

   

   

 

 

   

 

 

1

1

1

3

Where, , ,
1 2

1,1
,

1 1

2,1
,

2 1

aU bU
A B

BC a
C

BC b
D

E C

 

 

  

 

  

 
     

 
  
          
 

  
          

  

 

(A)Primal Geometric programming method 

The above inventory model(25) is solved by primal 

geometric programming method [22,26]. 

The dual form of the aboveprimal(25) model is as, 

3 51 2 4

1

1 2 3 4 5

( ) (26)

w ww w w

BA C D E
Maxd w

w w w w w

        
         
        

          
Orthogonal condition is as 

 

(27) 

 

Normalized condition is as 

1
54321
 wwwww

            
(28) 

 

Primal –dual relations are 

 
     

 
   

 

1

1 1 2

1

3

4

1

5

, ,

,

,

AT w d w B T w d w

CT w d w

DT w d w

ET w d w

 

 

 



 





  
 
 
 

 
   

 

From the above primal dual relations we get, 

 

       1 2 3 4 51 1 0w w w w w             
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 

 

1

1 32

1 1 2

2 4

1 1 3

1

2 4

1 1 5

,

,

B wAw

B w Cw

Aw Cw

B w Dw

Aw Ew

B w Dw



 



 

    
    
    
 

   
    

    
 

  
     
    

                              

(29) 

Along with,
 

 











11

2

wB

Aw
T

                                       

(30) 

 

The Non-linear equations (27,28,29) for 

1 2 3 4 5, , , ,w w w w w  can be solved to obtain 

1 2 3 4 5

* * * * *, , , ,w w w w w .Optimal ordering interval and 

minimized total average cost can be solved from (30) 

and(25) analytically. 

 

(ii)Case-2: 1.0 and 0 1.0.   
 

 
 

Therefore, total average cost in this case is as follows 

 

   
 

   

 

 

   

 

 

1

1

,1

1

1

1

3

1 2

1,11

1 2 1 (31)

2,11

2 2 1

av

aUT bUT

BC aT

TOC T

BC bT

C T

 







 















 
 

    
  
         
 
  
         

 
 

 

In this case, the generalized inventory model (25) 

will be in the following form, 

 
   1 1 1

1
,1Min (32)

0

av AT BT CT DT ET
TOC T

T

  



      
 



   

   

 

 

   

 

 

1

1

1

3

Where, , ,
1 2

1,11
,

1 2 1 (33)

2,11
,

2 2 1

aU bU
A B

BC a
C

BC b
D

E C

 









 
     

 
  
         
 

  
         

  

 

In the similar manner as in case (i) of model-I, primal 

geometric programming algorithm can provide the 

minimized total average cost and optimal ordering 

interval
*

,1TOC  , .*

1,T
 

(iii)Case-3:  α 1.0 and   0<β 1.0. 
 

 

Total average cost per unit time per cycle is,

 

   
 

   

 

 
 

   

 

 

0 1

1

1,

1

1

1

3

2 3

2,1

2 1

3,1

3 1

av

aUT bUT

BC aT

TOC T

BC bT

C T









 



 





 
 

  
  
          
 
  
         

 
 

 

In this case, the generalized inventory model (25) 

becomes as, 

  0 1 1

1, 1Min
(34)

Subject to 0

avTOC T AT B T CT DT ET

T

 



      




   

   

 

 

   

 

 

1

1

1

3

, ,
2 3

2,1
,

2 1where,

3,1
,

3 1

aU bU
A B

BC a
C

BC b
D

E C



 



 

 
   

 
  
         
 

  
         

  

 

In the similar manner as in case (i) of model-I, primal 

geometric programming algorithm can provide the 

minimized total average cost and optimal ordering 

interval
*

1,TOC  ,
*

1, .T  respectively 

(iv) Case-4: 1.0, 1.0.  

 
In this case, the generalized inventory model (25) 

will be, 
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  0 1 2 1

1,1 1
(35)

Subject to 0

avMinTOC T AT B T CT DT ET

T

     




 

   

   

 

 

   

 

 

1

1

1

3

Where, , ,
2 3

2,11
,

2 2 1

3,11
,

3 2 1

aU bU
A B

BC a
C

BC b
D

E C

 
   

 
  
        
 

  
        

  

 

The expression (35) coincides to the expression (11) 

for 1.0, 1.0 .  
 In the similar way as in case (i) of model-I, primal 

geometric programming algorithm can provide the 

minimized total average cost  *

1,1TOC T  and optimal 

ordering interval
*

1,1.T
 

 

3.4.2 Analytic solution of model-II 

 

Here, we consider  a fractional order inventory 

model, is described by the equation (16) where the 

rate of change of the inventory level ( )I t  is of 

fractional order   and the demand is a fractional 

polynomial of order  .This fractional order 

differential equation has been solved using Laplace 

transform method. In operator form the equation (16) 

becomes as, 

     ,

, , 0 1, 0

D I t a bt

d
D where t T

dt

 







  

                (36)

 

Using Laplace transform and the corresponding 

inversion formula on the equation (36) we get the 

inventory level for this fractional order inventory 

model at time t which can be written as 

 
 

 

 

11
(37)

1 1 2

b tat
I t Q

 

 

  
        

 

Using the boundary condition   0TI on the 

equation (37), the total order quantity is obtained as, 

 
 
 






21

1

1

1









TbaT
Q

                  

(38) 

The inventory level becomes as, 

 
 

 
 

 
 1 1

1
(39)

1 1 2

ba
I t T t T t   



 

 
  

         

 

The
th  0 1  order total fractional inventory 

holding cost is denoted  THOC  , and defined as 

 

   

 
 

   
 

 

 
 

 

 

 

 

 

   

 

 

 

 

,

1 0

11

1 10

1

1

1

1

1

2 1

1

1

1,1

(40)
1

11

2,2 1

T

T

HOC T

C D I t

a
T t

C
T t dt

b
T t

C aT

B

C b T

B

 



 



 

 

 









 





 







 



 





 
  

 
  
  
   

  
     
   
  

   
  

  
       
   
      



 

Therefore, the total average cost is denoted and 

defined as 
 

  

 

 

 

 

   

 

 

   

   

 

 

,

, 3

11

1

1 1

3

1 1,1

1 2 1 1 1
(41)

1 2,1

2 1 1

TOC T

UQ HOC T C

T

bU T BC aTaUT

C b T B
C T

 

 

  

 

  

    

  

  

 





 


    
               

  
    

           

Now, we shall consider four cases to study the 

behavior of this fractional order model  
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( )0 1.0and 0 1.0

( ) 1.0 and 0 1.0

( ) 1.0 and 0 1.0

( ) 1.0 1.0.

i

ii

iii

iv and

 

 

 

 

   

  

  

 
 

 

(i)Case-1: 0 1.0, 0 1.0.    
 

 
 

To find the minimum value of the total average cost 

 
,

avTOC T
 

, the corresponding non-linear 

programming problem  can be used  in the following 

form(model-1,case-(i)) and  then solve it analytically. 

 
   1 1 1

1
, (42)

0

av AT BT CT DT ET
MinTOC T

T

    

 

       
 



 

 

 

 

   

 

 

 

   

 

 

1

1

1

3

1
Where, , ,

1 2 1

1,1
,

1 1

1 2,1
,

2 1 1

bUaU
A B

BC a
C

C b B
D

E C



 

 

  

  

  

   
  
    

 
           

 
    

          
 

 

 

(ii) Case-2: 1.0, 0 1.0   
 

  

In this case, total average cost is presented as follows, 

 

  

 

 

 
 

   

 

 

   

   

 

 

,1

,1 3

1

1

1

1

1

3

1

1 2 1

1,11

1 2 1 (43)

1 2,11

2 1 2 1

TOC T

UQ HOC T C

T

bU TaUT

BC aT

C b T B

C T













 





 









 


  
 

    
 

            
    
         

 
   

Therefore, the fractional order inventory model (42) 

in this case will be, 

 
 1 1 1

1
,1Min (44)

Subject to 0

av AT B T CT DT
TOC T

T

  



     
 



 

 

 

 

   

 

 

 

   

 

 

1

1

1

3

1

2 1
Where, , ,

1 1,11

1 2 1

1 2,11
,

2 1 2 1

bU

aU
A B

BC a

C b B
C D C





 



 



    
  

   
                   

    
             
 

(iii) Case-3: 1.0,0 1.0.   
 

 

In this case, total average cost becomes as follows 

 

  

 

 

 

 

   

 

 

   

   

 

 

1,

1, 3

10

1

1

1 1

3

2 2,1

1 3 2 1
(45)

2 3,1

3 1

TOC T

UQ HOC T C

T

bU T BC aTaUT

C b T B
C T











  



 





 


  
             

  
  

          

 

Therefore, the equation (42) reduces as, 

 
 0 1 1 1

1
1,Min (46)

0

av AT B T CT DT ET
TOC T

Subject to T

 



     
 



    
 

 
 

 

   
 
 

 
   

 
 

1

1

1

3

2
Where, , ,

2 3

2,1
,

2 1

2 3,1

3 1

bUaU
A B

BC a
C

C b B
D

E C



 



 

  
  
  

 
           

  
         

 
 

 

 

In the similar way as in case (i) of model-I,  

minimum value of the total average cost
*

1,TOC   and 

optimal ordering interval and
*

,1 
T  analytically.

 

(iv) Case-4: 1.0 , 1.0.  
 

  

Therefore, the total average cost is as follows 
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 

  

 
 
 

 

   
 
 

   

   
 
 

1,1

1,1 3

10

1

1

2

1

1

3

2

2 3

2,11

2 2 1

2 3,11

3 2 1

TOC T

UQ HOC T C

T

bU TaUT

BC aT

C b T B

C T 

 


 
 

  
 

           
  
        
   

 

Therefore, the equation (42) reduces as, 

 
 0 1 2 1

1
1,1Min (47)

Subject to 0

av AT B T CT DT
TOC T

T

   
 


 

 

 

 

   

 

 

 

   

 

 

1

1

1

3

Where, ,
2

2

3
,

2,11

2 2 1

2 3,11
,

3 2 1

aU
A

bU

B
BC a

C b B
C

D C




  
 

 
  

 
         

 
      



 

The expression (47) coincides to the expression (11) 

for 1.0 , 1.0.    

In the similar manner as in case (i) of model-I, primal 

geometric programming algorithm can provide the 

minimum value of the total average cost  *

1,1TOC T  

and optimal ordering interval
*

1,1.T
 

 

3.4.3Analytic solution of model –III 

 

Here, we consider the fractional order inventory 

model which is described by the equation (17).The 

fractional order differential equation (17) can be 

solved by using Laplace transform method with the 

initial condition, are given in the problem. In operator 

form the equation (17) becomes, 

     ,

,0 1, 0

mD I t a bt

d
D t T

dt









  

                     

(48) 

Using Laplace transform and the corresponding 

inversion formula on the equation (48), the inventory 

level at time t can be obtained as, 

 
 

 
  




















m

tmbat
QtI

m





1

1

1 (49)

 

whereα maybe different fromm, 0<α 1.0.

where is the memoryparameter


 

After using the boundary condition   0TI in 

the equation (49), the total order quantity for this 

type fractional order inventory model can be obtained 

as, 

 
 
 m

TmbaT
Q

m















1

1

1
     

(50)

 
Corresponding memory dependent

th order total 

inventory holding cost is 

 

   

 
 

 
 

 

 
 

 

   

 

 

   

   

 

 

, ,

1 0

11

0

1

1

1
( )

1

1

1,1

1 1
(51)

1 1,1

1 1

m

T

T

m m

m

HOC T

C D I t

a
T t

C
T t dt

b m
T t

m

BC aT

C b m T B m

m

 



 



 

 

 







 

  

 

  





 



 



 
  

  
  
  
    

  
         

  
     

           



 

Therefore, the total average cost is as, 
 

  

 

 

 
 

   

 

 

   

   

 

 

, ,

, , 3

11

1

1

1

1

1

3

1

1 1

1,1

1 1 (52)

1 1,1

1 1

m

m

m

m

TOC T

UQ HOC T C

T

bU m TaUT

m

BC aT

C b m T B m

m

C T

 

 



 

 

 

 

  

 

  

 

 

  



 


  
 

     
 

             
     
           
 
 
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Now, we shall consider eightcases to study this type 

fractional order model as follows

( )0 1.0 ,0 1.0,0 1.0,

( ) 1.0 0 1.0,0 1.0,

( ) 1.0 0 1.0,0 1.0,

(iv) 1.0 0 1.0,0 1.0

( ) 1.0 0 1.0,

( ) 1.0 0 1.0,

( ) 1.0 ,0 1.0,

(viii 1.0 .

i m

ii m and

iii and m

and m

v m and

vi m and

vii m

m

 

 

 

 

 

 

 

 

     

    

    

    

   

   

   

  
 

 

(i)Case-1: 0 1.0 ,0 1.0,0 1.0.m        

 
Total average cost is as, 

 

 

  

 

 

 

 

   

 

 

   

   

 

 

, ,

, , 3

1 11

1

1

1 1

3

1 1,1

1 1 1 1
(53)

1 1,1

1 1

m

m

m

m

TOC T

UQ HOC T C

T

bU m T BC aTaUT

m

C b m T B m
C T

m

 

 

  

 

 

    

 

  

   

  



 


    
                

  
     

            

 

To find the minimum value of the total average cost

 
,m,

avTOC T
  , 

we proposed primal geometric 

programming method as model-I, case-(i). 

 
   1 11 1 1

1
, ,Min (54)

Subject to 0

mm
av

m

AT BT CT DT ET
TOC T

T

    

 

           
 



 

 

 

 

   

 

 

 

   

 

 

1

1

1

3

1
Where, , ,

1 1

1,1
,

1 1

1 1,1
,

1 1

bU maU
A B

m

BC a
C

C b m B m
D

m

E C

 

 

  

 

  

  
  
     

 
            

     
   

        
     

 

(ii)Case-2:  1.0 ,0 1.0,0 1.0.m      
 

 

Total average cost becomes as, 

 

  

 

 

 
 

   

 

 

   

   

 

 

,1,

,1, 3

1

1

1

1

1

3

2

1 2

1,1

1 1 (55)

2 2,1

2 1

TOC T

UQ HOC T C

T

bU TaUT

BC aT

C b T B

C T

 

 



 

 

 

 

  

 

  



 





 


 
 

    
 

             
   
          
   

Then system (54) reduces to

 

 
   1 1 1

1
,1,Min (56)

Subject to 0

av AT BT CT DT ET
TOC T

T

    

 

       
 



 

 
 

 

   
 

 

 
   

 
 

1

1

1

3

2
Where, , ,

1 2

1,1
,

1 1

2 2,1
,

2 1

bUaU
A B

BC a
C

C b B
D

E C

 

 

  

 

  

  
  
    

 
            

   
          

 
 

 

In the similar manner as in case (i) of model-I,

 *

,1,TOC T  and 
*
,1,T  can be found analytically. 

 

  0 1.0,0 1.0,and 1.0.: m      iii Case 3

  

In this case, total average cost is as, 
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 

  

 
 
 

 

   
 

 

   

   
 

 

, ,1

, ,1 3

11

1

1 1

3

1 1,11

1 1 1 2 1
(57)

1 1,11

1 2 1

m

m

m

m

TOC T

UQ HOC T C

T

bU m T BaUT C aT

m

C b m T B m
C T

m





 





  





 





 


    
               

  
     

           

For this parametric values the system (54) reduces to
 

 
   1 1 1

1
, ,1Min (58)

Subject to 0

mm
av

m

AT B T CT DT ET
TOC T

T

  



       
 



 

 
 

 

   
 

 

 
   

 
 

1

1

1

3

1
Where, , ,

1 1

1,11
,

1 2 1

1 1,11
,

1 2 1

bU maU
A B

m

BC a
C

C b m B m
D

m

E C

 









  
  
     

           
 
     

          
  

 

In the similar way, as in case (i) of model-I, it helps 

to give the results of minimized total average cost 

and optimal ordering interval  TTOC m

*

1,,  and

 TT m

*

1,,  respectively analytically. 

 

(iv) Case-4: 1.0 ,0 1.0,0 1.0.m       

In this case, total average cost is as, 

 

 

  

 
 
 

 

   
 

 

   

   
 
 

1, ,

1, , 3

0

1

11

3

1

2 2

2,1

2 1

2 3,1

3 1

m

m

m

m

TOC T

UQ HOC T C

T

bU m TaUT

m

B mC aT

C b T B
C T











 



 







 

  
 

   
 

           
  
          

 

Then, the system (54) will reduce to

 

 
   0 1

1
1, ,Min (59)

Subject to 0

mm
av

m

AT B T CT DT ET
TOC T

T





     
 



 

 

 

   

 

 

 

   

 

 

1

1

1

3

1
Where, , ,

2 2

2,1
,

2 1 (60)

2 2,1
,

3 1

bU maU
A B

m

BC a
C

C b B m
D

E C



 



 

  
  
   

 
 

         
 
   

         
 

 
 

Using primal geometric programming algorithm we 

can find minimized total average cost
*

1,m,TOC   and 

the optimal ordering interval
*

1,m,T   as describe in 

case-1 of model-I.

 

 

(v)Case-5: 1.0 and 0 1.0.m     
 

 

In this case, total average cost becomes as  

 

  

 
 

 
 

   
 

 

   

   
 

 

,1,1

,1,1 3

1

1

1

1

1

3

2

1 2

1,11

1 2 1 (61)

2 2,11

2 2 1

TOC T

UQ HOC T C

T

bU TaUT

BC aT

C b T B

C T











 

















 

 
 

    
  
   
      
 

   
   

     
  

Therefore, generalized inventory model (54) reduces 

to, 

 
   1 11

1
,1,1Min (62)

Subject to 0

av AT B T CT DT
TOC T

T

  



    
 


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   

   
 
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Where, ,
1

2 1,11
,

2 1 2 1

2 2,11
,

2 2 1

aU
A

bU BC a
B

C b T B
C

E C







 







 
  

 
   
    

       
 

   
        

  

 

In the similar way as in the case (i) of model-I, 

analytically, primal geometric programming 

algorithm can give the minimized total average cost
*

,1,1TOC  and optimal ordering interval
*
,1,1.T  

(vi) Case-6: 1.0, 1.0, 0 1.0m     
 

 

In this case, total average cost is as, 

 

  

 

 

 

 

   

 

 

   

   

 

 

 

1,1,

1,1, 3
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1

1

1 1

3

2 2,1

2 3 2 1
63

2 3,1

3 1

TOC T

UQ HOC T C

T

bU T BC aTaUT

C b T B
C T











 



 





 


  
            

  
  

          

 

Therefore, the generalized inventory model (54) 

reduces to, 

 
     0 1 11

1
1,1,Min (64)

Subject to 0

av AT B T CT DT ET
TOC T

T





     
 


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 

 

   

 

 

 

   

 

 

1

1

1

3

2
Where, , ,

2 3

2,1
,

2 1

2 3,1
,

3 1

bUaU
A B

BC a
C

C b B
D

E C



 



 

 
  
  

  
   

     
 

  
        

  

In the similar manner as in case (i) of model-I, primal 

geometric programming algorithm gives the 

analytical results of the minimized total average cost
*

1,1,TOC   and optimal ordering interval
*

1,1, .T   
 

(vii)Case-7: 1.0 and 0 1.0.m    
 

 

In this case, total average cost becomes as, 

 

  

 
 
 

 

   
 
 

   

   
 

 

 

1, ,1

1, ,1 3
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1

1
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3

1 2,11

2 2 2 2 1
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1 2,11

2 2 1

m

m

m

m

TOC T

UQ HOC T C

T

bU m T BaUT C aT

m

C b m T B m
C T

m





 


   
    

       
  

             

 

In this case, the generalized inventory model (54) 

becomes as, 

 
     0 1 11

1
1, ,1Min (66)

Subject to 0

mm
av

m

AT B T CT DT ET
TOC T

T

     
 


 

 

In the similar manner as in case (i) of model-I, primal 

geometric programming algorithm can give the 

minimized total average cost
*

1,m,1TOC  and optimal 

ordering interval
*

1,m,1.T  

(viii)Case-8: 1.0.m   
 

 

In this case, total average cost is as, 

 

  

 

 

 

 

   

 

 

   

   

 

 

1,1,1
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1 10

1

2
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3

2 2,11

2 3 2 2 1
(67)

2 3,11

3 2 1

TOC T

UQ HOC T C

T

bU T BC aTaUT

C b T B
C T 

 


  
    

      
  

          
 

In this case, the generalized inventory model (54) 

becomes as, 

 
   0 12

1
1,1,1Min (68)

Subject to 0

av AT B T CT DT
TOC T

T

   
 
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2 3,11
,
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bU

aU
A B

BC aT

C b T B
C

D C

   
  

  
                

  
        
 

 
 
 
 
 
 
 

 

The expression (68) coincides to the expression (11) 

for .0.1  m  

In the similar way as in case (i) of model-I, primal 

geometric programming algorithm can provide the 

minimum value of the total average cost
*

1,1,1TOC  and 

optimal ordering interval
*

1,1,1.T
 

 

4. NUMERICAL ILLUSTRATIONS 

(i)To illustrate numerically the developed classical 

and fractional order inventory model we consider 

empirical values of the various parameters in proper 

units as 20,7,50,6,10 31  CCUba

.The optimal ordering interval, minimized total 

average cost of the classical inventory model is found 

0.3211units and 623.1329 units respectively.  

(ii) Here, we provide a numerical illustration for the 

fractional order inventory models considering same 

parameters as used in classical inventory model. 

 

  *

,T  
*

,TOC  

0.1 4.0143 589.5088 

0.14360143  3.6653 623.1329  

0.2 3.2621 664.5379 

0.3 2.6519 729.9727 

0.4 2.1417 781.5483 

0.5 1.7046 815.0694 

0.6 1.3240 826.6948  

0.7 0.9905 813.3189 

0.8 0.7035 773.2086 

0.9 (growing 

memory 

effect) 

0.4739 707.4710 

1.0 0.3211 623.1329 

 

Table-2(a): Optimal ordering interval and minimized 

total average cost
*

,TOC  for 

1.0  to0.1 from  variesand,0.1    as 

defined in section 3.4.1(fractional model-I) case-2. 

 

It is clear from the table-2(a) that there is a critical 

value of the memory parameter (here it is 6.0
),for which the minimized total average cost becomes 

maximum and then gradually decreases bellow and 

above. For the above case, low values of signifies 

large memory of the inventory problem. There is 

another critical value of memory parameter (here it is 

14360143.0 )for which minimum value of the 

total average cost becomes equal to the memory less 

minimized total average cost but optimal ordering 

interval is different. For large memory effect,(which 

is 14360143.0 )the system needs more time to 

reach the minimum value of the total average cost 

compared to memory less system i.e. for the large 

memory effect, the system will take longer time to 

sell the optimum lot size compared to the memory 

less inventory system. Hence rate of selling decreases 

in large memory affected system. Therefore, to reach 

the same profit like memory less system, the 

shopkeeper should be changed his business policy 

such as attitude of public dealing, environment of 

shop or company, product quality etc. An observation 

has also been observed that there is some situation for 

which the system is very much attacked by the bad 

memory and then the company or shopkeeper has 

recovered his business policy. The above described 

facts happening in real life inventory system but we 

are not able to include in terms of classical model. 

Initially the business started with reputation with 

maximum profit minimizing the total average cost. 

As time goes on, the company starts to lose it‟s 

reputation due to the various unwanted causes. 

Accordingly, the company starts to downfall of its 

business when downfall becomes maximum at

6.0  .Attaining highest value at that point, the 

company changes its business policy and takes care 

to recover its reputation. 

 
    *

,T  
*

,TOC  

1.0 0.1 0.3596 616.5578 

1.0 0.2 0.3522 621.5138 

1.0 0.244157  0.3487 623.1329  

1.0 0.3 0.3443 624.7429  
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1.0 0.4 0.3371 626.5758 

1.0 0.5 0.3311 627.3265 

1.0 0.6 0.3265 627.2755 

1.0 0.7 0.3234 626.6604 

1.0 0.8 0.3216 625.6723 

1.0 0.9 (growing 

memory 

effect) 

0.3209 624.4596 

1.0 1.0 0.3211 623.1329 

 

Table-2(b): Optimal ordering interval and minimized 

total average cost
*

,TOC  for 

1.0  to0.1 from  variesand,0.1    as 

defined in section 3.4.1(fractional model-I) case-3. 

 

It is clear from the table-2(b), that there is a critical 

memory value of the memory parameter   (here it is

 5.0 ) for which minimized total average cost

*

,1 TOC  becomes maximum and then gradually 

decreases below and above. There is also clear that 

for the memory value 244157.0  for which 

minimized total average cost becomes equal to the 

memory less minimized total average cost but 

optimal ordering interval keeps small difference 

between them. Hence, for the large memory effect 

corresponding , the system does not take 

significantly more time to reach the minimum value 

of the total average cost compared to the memory less 

system. Practically,   is the memory parameter 

corresponding inventory holding cost or carrying 

cost. Here, memory or past experience is considered 

as bad or good attitude of the shopkeeper to the 

transportation driver. But, in general the 

transportation driver does not react corresponding 

bad attitude of the shopkeeper. On the other hand, 

transportation driver may be bad as a service man i.e. 

he may not serious for his duty. Due to the above 

reason, the system is affected by the poor service of 

the transportation but this is not effective too which is 

also proved from the table-2(b). 

 

 

In table-2(b),
*

,TOC  does not show similar 

behavior as in table-2(a) without the pt (

0.1and0.1    and in this case the ordering 

interval 
*

,T  is less i.e for 0.1  and fractionally 

varying   lesser time is required to reach the 

minimum value of the total average cost. 

 

  *

,T  
*

,TOC  

0.1 10.6778 473.2964 

0.2 6.3706 566.1366 

0.27247464  4.7926 626.5758 

0.3 4.3480 647.7863  

0.4 3.1396 715.2515 

0.5 2.3113 764.6220 

0.6 1.6926 791.7361 

0.7 1.2062 792.6978 

0.8 0.8178 764.5842       

0.9 (growing memory 

effect) 

0.5233 707.0966 

1.0 0.3371 626.5758 

 

Table-2(c): Optimal ordering interval and minimized 

total average cost
*

,TOC  for 

1.0  to0.1 from  variesand,4.0    as 

defined in section 3.4.1(fractional model-I) case-1. (  

symbolizes for increasing gradually) 

 

It is clear from table-2(c) that for the critical memory 

value (here it is 4.0,7.0   ) where 

minimized total average cost becomes maximum and 

then gradually decreases below and above.  

 

When exponent of holding cost is fractional 4.0

and another memory parameter   varies, minimized 

total average cost 4.0,27247464.0TOC  is same to the 

minimized total average cost 4.0,0.1TOC but in the 

optimal ordering interval has difference. For the large 

memory effect of the memory parameter ( ), 

system takes more time to reach the minimum value 

of the total average cost compared to the low memory 

effect. 

 

In table-2(c), the minimized total average cost

 *

,TOC  shows similar behavior as in table-2(a) 

but the optimal ordering interval does not behave 

similarly as in table-2(a). 

 

The following table-3(a) and table-3(b) has been 

constructed for the model-II, where rate of change of 

inventory level is of fractional order   and the 
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highest degree of the demand polynomial is also 

fractional order . 

 

For 1.0  to0.1 from  variesand,0.1    the 

model-II and model-I are identical. The same 

numerical results have been displayed in the table-

2(b). 

 

  *

,T  
*

,TOC  

0.1 286.1428 40.9294 

0.2  62.6096 140.1892 

0.3 23.6949 298.7682 

0.4 10.7735 492.2980  

0.5 5.2222 673.9411 

0.6 2.6011 794.6458 

0.7 1.3588 831.5622 

0.8 0.7672 796.8806 

0.9 (gro

wing 

memory

effect) 

0.4716 718.7286  

1.0 0.3211 623.1329 

Table-3(a): Optimal ordering interval and minimized 

total average cost
*

,TOC   for 

1.0  to0.1 from  variesand0.1    as 

defined in section 3.4.2(fractional model-II) case-2. 

(  uses for increasing gradually) 

 

It is obvious from table-3(a), that the minimized total 

average cost  0.1where*

, TOC is 

maximum at the memory parameter 7.0 and 

gradually decreases below and above. Since for 

4.0  the value of the minimized total average 

cost 
*

,TOC  is maximum at 7.0 in model-II 

but it attains maximum at 0.6  in model-I. This 

fact happens for consideration of fractional 

polynomials in demand rate in the model-II. For the 

demurrage of inventory   for long of the optimal 

ordering interval there is less significance of the 

optimal ordering interval
* *

0.1,1 0.2,1,T T .In this case the 

model will realistic on or after 0.3.   

 

  *

,T  
*

,TOC  

0.1 1.0000x10
4 

0.4783 

0.2  1.0000x10
4
 2.9736 

0.3 1.0000x10
4
 18.9921 

0.4 5.5094x10
3 

119.8284  

0.5 96.9713 408.3475 

0.6 8.0923 791.7361 

0.7 0.9570 792.6978 

0.8 0.5253 764.5842 

0.9 (growing 

memory effect) 

0.5233 707.0966  

1.0 0.3371 626.5758 

 

Table-3(b): Optimal ordering interval and minimized 

total average cost
*

,TOC   for 

1.0  to0.1 from  variesand4.0    as 

defined in section 3.4.1(fractional model-II) case-1. 

(  uses for increasing gradually) 

 

From table-3(b) it is clear that for large memory 

effect (here it is )4.0,1.0   the system takes 

more time to reach the minimum value of the total 

average cost compared to the low memory effect( 

here it is )4.0,0.1   .Hence, the  business 

stay long time to reach the minimum value of the 

total average cost. In this case, the model will 

realistic on or after 0.6 and 0.4   .Hence, 

in this case, short memory has been observed 

compared to the other case. 

 

The following table-4(a) has been constructed for 

model-III, where rate of change of inventory level is 

of fractional order   and the highest degree of the 

demand polynomial is also fractional m. 

 

For 1.0  to0.1 from  variesand0.1  m  

in fractional model-III (described in section 3.4.3, 

case-v) coincides with model-I (case-2).The obtained 

numerical results are same as given in table-2(b) 

 
  *

,T  
*

,TOC  

0.1 1.0000x10
4 

6.0313 

0.2  1.0000x10
4
 16.7221 

0.3 1.0000x10
4
 45.5166 

0.4 5.5094x10
3 

120.7342 

0.5 96.9713 263.2125 

0.6 8.0923 458.6571  

0.7 0.9570 659.0075 

0.8 0.5253 792.5776 

0.9 (growing 

memory effect) 

0.5233 803.6163 
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1.0 0.3371 718.8122 

Table-4(a): Optimal ordering interval and minimized 

total average cost
*

,m,TOC   for 

1.0  to0.1 from  variesand4.0  m  as 

defined in section 3.4.3(fractional model-III) case-

1.(  uses for increasing gradually) 

From the table-4(a), it is clear that for large memory 

effect (here it is )4.0,1.0  m the system 

takes more time to reach the minimum value of the 

total average cost compared to the low memory 

effect(here it is )4.0,0.1  m .Hence, for 

large memory effect, the business stay long time to 

reach the minimum value of the total average cost. 

Here also short memory has worked as in the table-

3(a) and table-3(b). 

 

Now, if we consider 

1.0  to0.1 from  variesand0.1  m  in 

the fractional model-III (described in section 3.4.3, 

case-vi) coincides with model-I (case-3).The 

obtained numerical results are same as given in table-

2(b). 

 

 

5. CONCLUSIONS 

 

The purpose of the article is to describe different type 

generalization of an inventory model to take into 

account memory effect via fractional calculus. An 

observation has been found that for all situations of 

all fractional order inventory model, there is a critical 

memory effect for which minimized total average 

cost is maximum and then gradually decreases bellow 

and above. This critical memory effect indicates that 

in that situation, profit of the system is low for poor 

memory effect or poor experiences. The memory 

parameter plays major role to take into account 

memory of the system compared to the another 

memory parameter . Due to consider fractional type 

demand rate, short term memory has been observed 

which is appropriate for newly started business. For 

long memory affected business, our first fractional 

model is suitable. More work with vision needs to be 

carried out for future aspects.
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